
T H E  D I S T R I B U T I O N  O F  T U R B U L E N T  E N E R G Y  IN  F R E E  J E T S  

I .  L .  V u l i s  a n d  L.  A.  V u l i s  UDC 532.522 

We discuss  the probable fo rm of the distribution of energy for pulsating motion in se l f - s imi la r  
f ree  turbulent jets of an incompress ib le  fluid, based on the considerat ions of s imilar i ty .  The 
fo rm of the integral  invariants for s e l f - s imi l a r  flow is indicated. 

a 

w 1. There  is e onsiderable in teres t  in investigating the distribution of the pulsation energy E = 1/2 V u!2 
1 

i=1 

as well as the balance equations for  this energy, in connection with the study of turbulent motion [1, 2]. A 
number  of papers  [3-5], etc. ) has recent ly  been published, and in these at tempts have been made - within 
the f ramework of semiempir ica l  theories  of t u r b u l e n c e -  to integrate  the balance equations for the pulsating 
energy in the boundary layer .  The simplifications and hypotheses introduced in the solution cannot always 
be regarded  as self-evident;  however, there  is no doubt that they make it possible to achieve sa t is factory 
agreement  with experiments  in a construct ive manner  when empir ical  information (compared with the in- 
format ion required for  the calculation of the average  flow) is taken f rom the experiment.  

For  the theory of turbulent jets (as for a turbulent boundary layer  as a whole) development along such 
lines promises ,  basically,  the ability to establish the relationship between the charac te r i s t i c s  of averaged 
and pulsating flows. At the same time, it may be possible to use the data on the mechanism of the p rocess  
that a re  available f rom the theory of turbulent jets to validate the methods of semiempir ica l  calculations.  

The foregoing s ta tement  should not be regarded  as excess ively  i l lusory.  We can draw an extremely 
important  and promis ing  conclusion f rom the work done in recent  yea r s  in the Soviet Union and abroad in 
connection with investigations into the pulsation s t ruc ture  of turbulent jets of an incompress ib le  fluid. We 
are  dealing here  with the fact that d i rect  the rmoanemomet r ic  measurements  of the average pulsation product 
u 'v ' ,  within the limits of experimental  e r ro r ,  give resul ts  that coincide with the value of ~'f/p - the tangen- 
tial fr ict ional s t r e s s  determined by calculation f rom the equation of the f ree  boundary layer:  

OU + v OU - 1 0 ( ~ f g ) '  
u Ox Oy yk Oy yk (1) 

Oug~ + avg k = o (2) 
Ox Og 

(k = 0 for  1, respectively,  for  a plane or  ax i symmetr ic  jet), if into the f i rs t  of these equations, solved for  
Tf, we substitute the resul ts  f rom the measurements  of the average  velocity, determined experimentally.  

This coincidence testifies,  f i r s t  of all, to the suitability of the approximate equations (1)and (2) forpur-  
poses  of describing the averaged motion and, secondly, as to the propr ie ty  of utilizing the calculation meth-  
ods and schemes f rom jet theory [6], which are  vir tual ly exact in showing the distribution of the average  
quantities (consequently, of turbulent flow as well), 

Direc t  measurements  (in [10]) have also conf i rmed experimental ly  that the calculation of the t r ans -  
ve r se  component of the averaged veloci ty v f rom (2), i . e . ,  within the f ramework  of boundary- layer  theory, 
leads to vir tual  agreement  with experiment.  

To find the distribution of E - the average  pulsation e n e r g y -  in addition to (1) and (2), we should in- 
tegra te  the energy balance equation 

oE +aE a 
u O~ Oy yh Oy Oy s (3) 
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(where ~ is the dissipative term). To integrate (3) we have to specify the expressions for the diffusion of 

pulsation energy, based on certain considerations (usually on the basis of dimensionality, as per Kolmog- 
orov), and we also have to specify the dissipation of the first and third terms in the right-hand member of 
Eq. (3). It is only the generation of energy (the second term on the right) that is entirely specified by the 
solution of (I) and (2). 

As a result of integrating (3) under the eorresponding boundary conditions (the solution of (i) and (2) 
is assumed to be known) we are able to find the energy distribution E = E (x, y) and its convection. 

Naturally, the first attempts at direct solution of the problem were directed at the simplest self-sim- 
ilar jets, i.e., those motions initiated by turbulent jet sources at a considerable distance from the outlet 
of the jet. An interesting attempt along these lines was undertaken in [5] in connection with a self-similar 
plane jet of an incompressible fluid. It is based on notation of the diffusion of pulsation energy in the form 
of a single gradient term and a modified expression for dissipation, which contains (as does the expression 
for diffusion) the turbulent viscosity v t from the momentum equation (i) as the transfer coefficient. As a 
result, on introduction of the second empirical constant [5] it became possible to bring the results from the 
numerical integration of (3) into agreement with the experimental data from [9]. 

Below we describe a somewhat different attempt- a more general approach to the same self-similar 
problem- which might be useful in other cases. 

w For the self-similar region of flow, as is well known, there exists a universal profile for the 
average velocity in turbulent jets: 

u = u.,F (~), u~ = A,~ ~ ~p = Bgx ~, (4) 

w h e r e  B - 1/a is  an e x p e r i m e n t a l  cons tan t ;  A is  a cons t an t  d e t e r m i n e d  f r o m  the in i t i a l  condi t ion  (based on 
the spec i f i ed  m o m e n t u m  flux); P = - 1 for  p l a ne  (~ = - 1/2) and a x i s y m m e t r i e  (oz = - 1) t u r b u l e n t  j e t s ;  u m 
is  the  ve loc i t y  at  the axis ;  f ina l ly ,  F(q~) = ch-2~ for  a p l ane  and F(9) = (1 + ~ / 8 )  -2 for  an a x i s y m m e t r i c  jet ,  
when the so lu t ion  is  b a s e d  on the s o - c a l l e d  new P r a n d t l  f o r m u l a  (v t = bu m , see  for  example  [6]). 
Since U m ~  x ~ it  fol lows f r o m  (1), a f t e r  it  has  been  r e duc e d  to s e l f - s i m i l a r  fo rm,  that  ~ ~ x 20~, i . e . ,  
u ' v '  ~ 1/x for  a p l ane  je t  and ~ 1/x 2 for  an a x i s y m m e t r i c  j e t .  

As fol lows f r o m  the i n v e s t i g a t i o n  of the pu l s a t i on  s t r u c t u r e  of t u r b u l e n t  j e t s ,  at a su f f i c i en t ly  g r e a t  
d i s t ance  f r o m  the s o u r c e s  (apparen t ly  g r e a t e r  than  is  r e q u i r e d  for  s e l f - s i m i l a r i t y  on the b a s i s  of a v e r a g e  
ve loc i ty)  we note  the e s t a b l i s h m e n t -  c o r r e c t  for  p r a c t i c a l  p u r p o s e s  - of the u n i v e r s a l  p r o f i l e  for  the a v e r a g e  
p u l s a t i o n  c h a r a c t e r i s t i c s  ~4"fi 7~, u ' v ' ,  E, e tc .  Consequent ly ,  it  ma y  be  a s s u m e d  for  a s e l f - s i m i l a r  je t  that  

E =  E..(x)t(~), E,~--x~ (5) 

and Eq.  (3) can  be  r e w r i t t e n  in s e l f - s i m i l a r  fo rm,  in  which c a s e  it  wi l l  be  independen t  of the  c o o r d i n a t e s  
x and y s e p a r a t e l y  (while dependent  only on the r e duc e d  c o o r d i n a t e  9 = By/x).  However ,  if we know the 
a b o v e - i n d i c a t e d  r e l a t i o n s h i p  "UL'v ' ~ x 2~, and a l so  that  the d e r i v a t i v e s  0u/0x ~ x ~ i t  i s  p o s s i b l e  without  
de ta i l ed  no ta t ion  of the equat ion  to e s t a b l i s h  the r e l a t i o n s h i p  be t w e e n  the quan t i ty  be tween  E in  the s e l f - s i m -  
i l a r  r eg ion  of flow and the x c o o r d i n a t e .  F r o m  these  c o n s i d e r a t i o n s  we see  that  E m ~ x s ~ x 2a, i . e . ,  
s = - 1  for  a p l ane  je t  and s = - 2  for  a c i r c u l a r  j e t .  Knowing the va lue  of the s e l f - s i m i l a r i t y  c o n s t a n t  s 
for  the pu l s a t i on  energy ,  f r o m  the s a m e  c o n s i d e r a t i o n s  of d i m e n s i o n a l i t y  we can  e s t a b l i s h  the f o r m  of the 
i n t e g r a l  i n v a r i a n t  for  (3). Indeed,  if we w r i t e  the e x p r e s s i o n  

i uEZgkdg=u'Efnxl+k i F(~)/z(~) '  (6) 
0 0 

where  z is  the e x p o n e n t -  as  yet  u n k n o w n -  i t  fol lows f r o m  the u n i v e r s a l i t y  of the p r o f i l e s  F((P) and f(q~) that  
the i n t e g r a l  on the  r i g h t - h a n d  s ide  r e p r e s e n t s  s o m e  n u m b e r .  

It is  obvious  that  for  the p r e i n t e g r a l  f a c t o r  u m E Z x  t+k ~ x a+zs+ t+k  a l so  to be  independen t  of the c o o r -  
dinate ,  the va lue  of the exponents  z should  be  se t  equal  to 

c t + l + k  a + 1 4 - k  1 
z = = -- (7) 

s 2a 2 

for  p l ane  and a x i s y m m e t r i c  j e t s ,  In th i s  case ,  the  fol lowing equat ion  is  va l id :  

- -  u V~E gkd v = O, u I / E  ghdg = const. (8) 
dx 

0 0 
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The quant i ty  p r o p o r t i o n a l  to E 1/2 is denoted V E, and e s sen t i a l l y  it c h a r a c t e r i z e s  the m e a n  quadra t i c  pu l s a -  
t ion  ve loc i t y  

V~= u '2+v"  + w ' 2 =  
3 

(in the c a s e  of local  i s o t r o p y  fo r  the pu lsa t ion  of ve loc i t y  V E = 4-~W= 2f~-). 

Thus ,  along a s e l f - s i m i l a r  je t  (plane o r  a x i s y m m e t r i e )  the flux of magni tude  V E will  r e m a i n  cons tan t :  

uV e gkdy = const. (9) 
0 

Having d e t e r m i n e d  the in t eg ra l  invar ian t  of the p rob l em,  fo r  the pu lsa t ion  ve loc i ty  V E we can  wr i t e  
the t r a n s f e r  equat ion in the f o r m  

OVe + v g*De , (10) 
u O-x Og gh Og 

w h e r e  D E is the tu rbulen t  diffusion coef f ic ien t  fo r  the  quant i ty  V E.  The  va l id i ty  of this  equat ion (given r e a -  
sonable  hypo theses  with r e s p e c t  to the  coef f ic ien t  DE) can be  d e m o n s t r a t e d  by p roceed ing  f r o m  the r e c i p r o -  
ca l .  F o r  this  purpose ,  let  us wr i t e  the  bounda ry  condi t ions  fo r  the tu rbulen t  e n e r g y  E (or VE), and at the 
s a m e  t i m e  fo r  the ve loc i t y  

V = 0 ,  OU--U-.~--O~=O (OVE =0)wheny-~0; 
Oy @ \ Og (11) 

u =  - - = E =  - - = 0  = - -  = 0  w h e n g =  oo. 
Og Og Oy 

With c o n s i d e r a t i o n  of t h e s e  bounda ry  condi t ions ,  
the cont inui ty  equat ion (2) 

OuVeg k OvVeg h - - +  
Ox Oy 

if we i n t eg ra t e  (10) in a f o r m  de r ived  by m e a n s  of 

O {.k,~ aVe) 
Ov L v'- 'e ~-Y ' (lOa) 

a c r o s s  the en t i re  bounda ry  l a y e r  ( f rom y = 0 to  y = ~o), a f t e r  s impl i f i ca t ion  we obtain the s a m e  invar ian t :  
a: 

SUVEykdy = eons t .  
0 

However ,  f r o m  a c o m p a r i s o n  of (1) and (10), if in the f i r s t  of these  we express yf/P= v t 0u/Oy, w h e r e  
v t is the tu rbu len t  v i s cos i ty ,  and if we a l so  denote  the r a t io  v t / D  E = z4 (a kind of tu rbu len t  P r a n d t l  n u m b e r  
o r  the t r a n s f e r  VE), we see  that  the p r o f i l e s  f o r  VE and u a r e  a s s o c i a t e d  with each  o ther  by a s imple  r e l a -  
t ionship  of the f o r m  

VE _ (~m'~ x (12) 
Vem ) 

in ana logy  with the p r o f i l e s  of t e m p e r a t u r e  and ve loc i t y  in n o n i s o t h e r m a l  j e t s .  As r e g a r d s  the va lue  of the 
coef f ic ien t  x ,  in f i r s t  app rox ima t ion  a s s u m e d  h e r e  to be cons tant ,  it b e c o m e s  poss ib l e  on the b a s i s  of the 
known expe r imen ta l  data [12] to a s s u m e  that  ~4 ~ 1, o r  h a r d l y  d i f fe ren t  f r o m  unity.  However ,  the va lue  of 
~4 is in need  of f u r t h e r  r e f i ne m e n t .  

Thus,  re ta in ing ,  fo r  example ,  the s a m e  s c h e m e  of solut ion f o r  the a sympto t i c  l a y e r  and the new 
Prand t l  f o r m u l a  (u t = bum),  we find the d i s t r ibu t ion  of the pu lsa t ion  e n e r g y  in the f o r m  

fo r  a plane jet  
E = const x -1 ch -~  % (13) 

f o r  an a x i s y m m e t r i c  je t  

E = constx ~ ( 1 + - -  . (14) 

The  va lue  of the cons t an t s  in these  f o r m u l a s  is a s s o c i a t e d  with the i n v a r i a n t s j  u2ykdy and.  UVEykdy of the 
p r o b l e m .  0 0 
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Having d e t e r m i n e d  the d i s t r ibu t ion  of the pu lsa t ion  energy,  we can a l so  ca lcu la t e  i ts  convec t ion  in 
a c c o r d a n c e  with the e x p r e s s i o n  u OE/0x + v 0E/0y.  Thus,  Eq. (3) will  r e t a in  two undefined t e r m s -  the dif-  
fus ion and d i ss ipa t ion  of ene rgy .  F o r  example ,  a s s u m i n g  an e x p r e s s i o n  fo r  diffusion in the f o r m  

1 0 [v ~ ( ~ +  ,p , ) ]_~E  o f ~ Oe~ 

w h e r e  cr E is ye t  ano ther  " tu rbu len t  P r a nd t l  n u m b e r , "  g e n e r a l l y  d i f fe ren t  f r o m  unity,  we can find the d i s s i p a -  
t ion  f r o m  the d i f f e rence .  Of c ou r se ,  o ther  m e a n s  a r e  pos s ib l e  to d e t e r m i n e  the ba l ance  (in pa r t i cu l a r ,  the 
use  of the r e l a t ionsh ip  be tween  the r i g h t - h a n d  m e m b e r s  of (3) and (10), e t c . ) .  

For the self-similar flow region (average and pulsation flow) the profiles of the individual components 
of the turbulent pulsations in velocity, i.e., ~ ~vr~, 4"~ s u'v----', etc., must also be universal. Therefore, 
for each of these components we can write analogous particular invarianfs of the form 

i u ~ / ~  ghdg = const, 
0 

as wel l  a s  o ther  inva r i an t s  (see be low)and  e x p r e s s i o n s  of the f o r m  

(U 
w Let  us m a k e  s e v e r a l  r e m a r k s  with r e s p e c t  to t he se  r e s u l t s .  F i r s t  of all, we note  that  the above -  

de r ived  inva r i an t  f o r  the s e l f - s i m i l a r  flow i UVE ykdy = cons t  is not  unique. The s a m e  c o n s i d e r a t i o n  (deal- 

0 i ing with the independence  of the x coord ina te )  lead to the g e n e r a l  f o r m  of the invar ian t  uZlVZ2ykdy = const ,  
m l~J 

0 
w h e r e  z 1 is an a r b i t r a r y  number ,  and z 2 = 2 -  zi.  As examples  we can c i te  the in t eg ra l s  .f u2ykdy, .l Eykdy 

~ 0 0 

"~ ~ v ~ y k d y ,  j 'u3V-lykdy,  and n u m e r o u s  o the r s .  Each  of these  i n t eg ra l s  will  r e t a in  i ts  va lue  along the se l f -  
0 0 

s i m i l a r  s egmen t  of the  je t .  
Y 

S }'V~ 4ykdy)ykdy We can point to other families of integral invariants, for example, of the form uZ3( 

u 'u2ykdy) ykdy = cons t  f o r  z 3 z 4 2, etc.  ), w h e r e  = eons t  (for ins tance ,  u 2 (j Eykdy)  ykdy = eons t  o r  E ( = = 
0 0 0 0 

z 3 is an arbitrary number, and z 4 = 4- z 3, etc. 

This result (and those similar to it) is a consequence of the transformation of self-similarity and per- 
rains to any quantity whose distribution is subject to a formula of the form of (6). 

The existence of these invariants makes it possible with comparative ease to use the experimental 
data to test the validity of the fundamental hypotheses and primarily the self-similarity of the average and 
pulsation motion. However, detailed and reliable data containing measurements of all three velocity pul- 
sations, etc., are presently not available. For an axisymmetric jet the relationship E m "~ x -2, as well as 
the approximate similarity of the V E and u profiles is apparently confirmed experimentally [10-12]. The 
form of the individual terms in the energy-balance equation derived by calculation [ii] agrees qualitatively 
with experiments. 

For a plane jet, on the basis of the data from [9] and from calculation [5], in the ~ pulsation veloc- 
ity profile on the segment that is close to the self-similar, the minimum is retained on the jet axis (in the 
case of a round jet it is absent [7]). It is possible that in these tests the self-similar profile of the pulsa- 
tion energy* has not yet been completely established because of the presence of a weak cocurrent, or for 
some other reason. A reliable conclusion in this connection can be drawn only after specialtests are carried 
out andif detailed measurements are made of each of the three components of the pulsation velocity, etc. 

*This  is suppor t ed  by r e s u l t s  f r o m  the unique Mikhasenko e x p e r i m e n t  involving a p lane  jet  under  the ac t ion 
of a m e c h a n i c a l  t u r b u l i z e r  [13] - with an e leva ted  ini t ial  t u rbu lence  level  the m i n i m u m  fo r  ~ v i r t ua l l y  
d i s a p p e a r s  on the axis  of the plane jet .  (In t e s t s  with an a x i s y m m e t r i e  je t  - with and without  a t u r b u l i z e r  - 
the  c o n s t a n c y  of the in tegra l fm/ -Eydy  has been  c o n f i r m e d .  ) 
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Let us also point out that Eq. (3), at f i rs t  glance, admits of yet another var iant  for the se l f - s imi la r  
solution. We are  speaking of an ideal turbulent jet for which two pai rs  of t e rms  in the balance equation 
a re  separa te ly  offset at each point: the generat ion and dissipation of energy, on the one hand, and convec-  
tion and diffusion on the other hand. In this case, the local power of the sources  and sinks at any point on 
the jet must  be equal to zero .  In this event only two t e rms  - convections and diffusions - a re  retained in 
(3) and it becomes  s imi la r  to (1). However, in this case  we must  have E m "~ x ~ on the se l f - s imi l a r  seg-  

r  

ment of the flow (rather than x 2~, as derived above) and we would have the invariant [ u E y k d y  = const (in- 

stead of S uCEykdy = const).  This does not agree  with the se l f - s imi la r i ty  of (1) for the6' average  velocity 
0 

and, apparently, contradicts  the well-known jet experiment.  The fur ther  development and accumulation of 
experimental  data will demonstra te  whether or not the concept of an ideal pulsation energy for a turbulent 
jet (or of some other ideal turbulent flow) with locally compensated sources  and sinks - which is useful for 
approximate eva lua t i on -  exhibit only theoret ical  significance or whether a motion that is s e l f - s imi l a r  with 
respec t  to the pulsa t ion-energy profile under cer ta in  conditions can exist as an asymptotic motion. 

Let us dwell br ief ly on the nonse l f - s imi la r  problem. In the general  case  we should be speaking of 
calculating the var ia t ions  in the pulsa t ion-energy profi le along the entire jet, beginning f rom the specified 
initial profi le  to the developed se l f - s imi la r i ty .  It is p rec i se ly  this formulation of the problem that best  
cor responds  to the experiment (see, for example, [10, 11], e tc . ) .  

In such a general  form the solution of the problem becomes ext remely  complex. With a monotonic 
var ia t ion in the average  veloci ty (um diminishes in the direct ion of the jet) the pulsation energy E m at the 
axis initially increases ,  subsequently passing through a maximum, and then diminishing. Thus, at the be-  
ginning of the jet the quantities Um and E m va ry  oppositely with increas ing distance f rom the source,  while 
at the end the var ia t ion is identical. It is therefore  difficult to collect  uniform expressions for  the compo- 
nents in the pulsa t ion-energy  balance equation that a re  suitable for  the entire jet .  As regards  the use of 
the method for the equivalent problem f rom the theory of heat conduction [6, 14], which has demonstrated 
its applicability in the calculation of average cha rac t e r i s t i c s  for  nonse l f - s imi la r  flows, it may prove to be 
useful for  the basic segment of the jet, i . e . ,  the flows beyond the maximum E m. 

A more  complete conclusion can be drawn only af ter  thorough and systemat ic  tests  are  per formed.  
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