THE DISTRIBUTION OF TURBULENT ENERGY IN FREE JETS
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We discuss the probable form of the distribution of energy for pulsating motion in self-similar
free turbulent jets of an incompressible fluid, based on the considerations of similarity, The
form of the integral invariants for self-similar flow is indicated,
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§1. Thereis considerable interestin investigating the distribution of the pulsation energy E = 1/2 E u{z
i=1
as well as the balance equations for this energy, in connection with the study of turbulent motion [1, 2], A
number of papers [3-5], etc.) has recently been published, and in these attempts have been made — within
the framework of semiempirical theories of turbulence — to integrate the balance equations for the pulsating
energy in the boundary layer. The simplifications and hypotheses introduced in the solution cannot always
be regarded as self-evident; however, there is no doubt that they make it possible to achieve satisfactory
agreement with experiments in a constructive manner when empirical information (compared with the in-
formation required for the calculation of the average flow) is taken from the experiment,

For the theory of turbulent jets (as for a turbulent boundary layer as a whole) development along such
lines promises, basically, the ability to establish the relationship between the characteristics of averaged
and pulsating flows, At the same time, it may be possible to use the data on the mechanism of the process
that are available from the theory of turbulent jets to validate the methods of semiempirical calculations,

The foregoing statement should not be regarded as excessively illusory. We can draw an extremely
important and promising conclusion from the work done in recent years in the Soviet Union and abroad in
connection with investigations into the pulsation structure of turbulent jets of an incompressible fluid. We
are dealing here with the fact that direct thermoanemometric measurements of the average pulsation product
U'v', within the limits of experimental error, give results that coincide with the value of Tf/p — the tangen-
tial frictional stress determined by calculation from the equation of the free boundary layer:
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(k = 0 for 1, respectively, for a plane or axisymmetric jet), if into the first of these equations, solved for
Tf, we substitute the results from the measurements of the average velocity, determined experimentally.

This coincidence testifies, first of all, to the suitability of the approximate equations (1) and (2) for pur-
poses of describing the averaged motion and, secondly, as to the propriety of utilizing the calculation meth~
ods and schemes from jet theory [6], which are virtually exact in showing the distribution of the average
quantities (consequently, of turbulent flow as well),

Direct measurements (in [10]) have also confirmed experimentally that the calculation of the trans-
verse component of the averaged velocity v from (2), i.e., within the framework of boundary~layer theory,
leads to virtual agreement with experiment.

To find the distribution of E — the average pulsation energy — in addition to (1) and (2), we should in-
tegrate the energy balance equation
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(where ¢ is the dissipative term). To integrate (8) we have to specify the expressions for the diffusion of
pulsation energy, based on certain considerations (usually on the basis of dimensionality, as per Kolmog-
orov), and we also have to specify the dissipation of the first and third terms in the right-hand member of
Eq. (3). It is only the generation of energy (the second term on the right) that is entirely specified by the
solution of (1) and (2).

As a result of integrating (3} under the corresponding boundary conditions (the solution of (1) and (2)
is assumed to be known) we are able to find the energy distribution E = E %, y) and its convection.

Naturally, the first attempts at direct solution of the problem were directed at the simplest self-sim-
ilar jets, i.e,, those motions initiated by turbulent jet sources at a considerable distance from the outlet
of the jet. An interesting attempt along these lines was undertaken in [5] in connection with a self-similar
plane jet of an incompressible fluid. It is based on notation of the diffusion of pulsation energy in the form
of a single gradient term and a modified expression for dissipation, which contains (as does the expression
for diffusion) the turbulent viscosity ¥; from the momentum equation (1) as the transfer coefficient, As a
result, on introduction of the second empirical constant [5] it became possible to bring the results from the
numerical integration of (3) into agreement with the experimental data from [9].

Below we describe a somewhat different attempt — a more general approach to the same self-similar
problem — which might be useful in other cases,

§2, TFor the self-similar region of flow, as is well known, there exists a universal profile for the
average velocity in turbulent jets:

u=u,F(p), u,=A" ¢=Bysd (4)

where B = 1/a is an experimental constant; A is a constant determined from the initial condition (based on
the specified momentum flux); £ = -1 for plane (o= ~1/2) and axisymmetric (@ = —1) turbulent jets; uy
is the velocity at the axis; finally, F(¢) = ch™2¢ for a plane and F@) = (1 + ¢*/8)7% for an axisymmetric jet,
when the solution is based on the so-called new Prandtl formula (v¢ = buy, , see for example [6]).

Since um ~ x%, it follows from (1), after it has been reduced to self-similar form, that u'v' ~ Xzoz, i,e.,
u'v' ~ 1/x for a plane jet and ~ 1/x% for an axisymmetric jet,

As follows from the investigation of the pulsation structure of turbulent jets, at a sufficiently great
distance from the sources (apparently greater than is required for self-similarity on the basis of average
velocity) we note the establishment — correct for practical purposes — of the universal profile for the average
pulsation characteristics m, u'v', E, etc. Consequently, it may be assumed for a self-similar jet that

E=E, /(@) En~x (5)

and Eq. (3) can be rewritten in self-similar form, in which case it will be independent of the coordinates

x and y separately (while dependent only on the reduced coordinate ¢ = By/x). However, if we know the
above-indicated relationship u'v' ~ x*%, and also that the derivatives 8u/8x ~ x%!, it is possible without
detailed notation of the equation to establish the relationship between the quantity between E in the self-sim-~
ilar region of flow and the x coordinate, From these considerations we see that Ep, ~ x5 ~ 2%, i e.,

s = —1 for a plane jet and s = —2 for a circular jet, Knowing the value of the self-similarity constant s

for the pulsation energy, from the same considerations of dimensionality we can establish the form of the
integral invariant for (3). Indeed, if we write the expression

S uEyrdy = u Em MF S F () f* (%), (6)
0 [

where z is the exponent — as yet unknown — it follows from the universality of the profiles F (¢) and () that

the integral on the right-hand side represents some number,

It is obvious that for the preintegral factor umE%nx1+k ~ x2S K

dinate, the value of the exponents z should be set equal to
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also to be independent of the coor-

for plane and axisymmetric jets. In this case, the following equation is valid:

©

S uVE yidy =0, S uV'E yrdy = const. (8)
b
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The quantity proportional to Ei/ % is denoted Vg, and essentially it characterizes the mean quadratic pulsa-

tion velocity
VE = Vu + U + l/__

(in the case of local isotropy for the pulsation of velocity V = vu 7 = V2E),

Thus, along a self-similar jet (plane or axisymmetric) the flux of magnitude Vg will remain constant:

j' uV,, y*dy = const. (9)
0
Having determined the integral invariant of the problem, for the pulsation velocity Vg we can write
the transfer equation in the form
Ve Ve _ 10 (ykDE‘w——E), (10)
dx dy Yk dy Ay

where D is the turbulent diffusion coefficient for the quantity Vi. The validity of this equation (given rea-
sonable hypotheses with respect to the coefficient D) can be demonstrated by proceeding from the recipro-
cal, For this purpose, let us write the boundary conditions for the turbulent energy E (or Vg), and at the
same time for the velocity

v =0, ?i___ﬁ___.o (‘?_E=O) when y =0;
y oy y (11)
u:izgzﬁzo (VE=QZ§.—_0) when § = oo
oy 0y Yy

With consideration of these boundary conditions, if we integrate (10) in a form derived by means of
the continuity equation (2)
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cross the entire boundary layer (from y = 0 to y = =), after simplification we obtain the same invariant:

(10a)

quEykdy = const,

However, from a comparison of (1) and (10), if in the first of these we express 'rf/p Vi 8u/8y, where
vt is the turbulent viscosity, and if we also denote the ratio v / Dg = % (a kind of turbulent Prandtl number
or the transfer V), we see that the profiles for Vg and u are associated with each other by a simple rela-
tionship of the form

Ve _ (i \* (12)
VEm Up,

in analogy with the profiles of temperature and velocity in nonisothermal jets. As regards the value of the
coefficient ®, in first approximation assumed here to be constant, it becomes possible on the basis of the
known experimental data [12] to assume that ® = 1, or hardly different from unity, However, the value of
% is in need of further refinement,

Thus, retaining, for example, the same scheme of solution for the asymptotic layer and the new
Prandtl formula (¥4 = bupy), we find the distribution of the pulsation energy in the form

for a plane jet
E = const x*ch™ o, (13)

for an axisymmetric jet
— CP2 —2%
E = const x? (l—i— ~é~) . (14

The value of the constants in thege formulas is associated with the invariantsj kdy and guVE kdy of the
problem, o
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Having determined the distribution of the pulsation energy, we can also calculate its convection in
accordance with the expression udE/8x + vO8E/dy, Thus, Eq. (3) will retain two undefined terms — the dif-
fusion and dissipation of energy. For example, assuming an expression for diffusion in the form

I 0 g 0 oF
— = [¢* (JE +0p £ (kv—- 15
el Lo P = o P ) (15)
where O is yet another "turbulent Prandtl number," generally different from unity, we can find the dissipa-
tion from the difference. Of course, other means are possible to determine the balance (in particular, the
use of the relationship between the right-hand members of (3) and (10), ete.).

For the self-similar flow region (average and pulsation flow) the profiles of the individual components
of the turbulent pulsations in velocity, i.e., Vi, Vo', VW', W', etc., must also be universal. Therefore,
for each of these components we can write analogous particular invariants of the form

T u Vu:’ * yrdy = const,

0

as well as other invariants (see below)and expressionsof the form

ut‘ ( 174 )y,
l/ PR - Up, / )
Umi
§3. Let us make several remarks with respect to these results. First of all, we note that the above-
derived invariant for the self-similar flow ( uVEykdy = const is not unique. The same consideration (deal-
ing with the independence of the x coordmate) lead to the general form of the invariant S uzivzzykdy = const,
where zy is an arbitrary number, and z, = 2 — zy. As examples we can cite the mtegrals fuzykdy, Y Eykdy
~ 5V2 kdy j wvi kdy and numerous others, Each of these integrals will retain its value along the self-

smular segment of the jet.

©

L
We can point to other families of integral 1nvar1ants for example, of the form uz3(S 4ykdy)ykdy
0
= const (for instance, S SEykdy) vEdy = const or S' E (S u?yKdy) yKdy = const for z; = z4 2, ete.), where
z3 is an arbitrary number, and 7y = 4 — zq, etc.

This result (and those similar to it) is a consequence of the transformation of self-similarity and per-
tains to any quantity whose distribution is subject to a formula of the form of (6).

The existence of these invariants makes it possible with comparative ease to use the experimental
data to test the validity of the fundamental hypotheses and primarily the self-similarity of the average and
pulsation motion. However, detailed and reliable data containing measurements of all three velocity pul-
sations, etc., are presently not available. For an axisymmetric jet the relationship E, ~ x"2, as well as
the approximate similarity of the Vi and u profiles is apparently confirmed experimentally [10-12], The
form of the individual terms in the energy-balance equation derived by calculation [11] agrees qualitatively
with experiments,

For a plane jet, on the basis of the data from [9] and from calculation [5], in the Var? pulsation veloc-
ity profile on the segment that is close to the self-similar, the minimum is retained on the jet axis (in the
case of a round jet it is absent [7]). It is possible that in these tests the self-similar profile of the pulsa-
tion energy* has not yet been completely established because of the presence of a weak cocurrent, or for
some other reason., A reliable conclusion in this connection can be drawn only after specialtestsarecarried
out and if detailed measurements are made of each of the three components of the pulsation velocity, etc.

*This is supported by results from the unique Mikhasenko experiment involving a plane jet under the action
of a mechanical turbulizer [13] — with an elevated initial turbulence level the minimum for vi'? virtually
disappears on the axis of the plane jet. (In tests with an axisymmetric jet — with and without a turbulizer —
the constancy of the integral [uVEydy has been confirmed. )
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Let us also point out that Eq. (3), at first glance, admits of yet another variant for the self-similar
solution. We are speaking of an ideal turbulent jet for which two pairs of terms in the balance equation
are separately offset at each point: the generation and dissipation of energy, on the one hand, and convec-
tion and diffusion on the other hand, In this case, the local power of the sources and sinks at any point on
the jet must be equal to zero, In this event only two terms — convections and diffusions - are retained in
(3) and it becomes similar to (1), However, in this case we must have Eq; ~ x% on the self-similar seg-

ment of the flow (rather than x*%, as derived above) and we would have the invariant s‘uEykdy = const (in-
stead of 5 u\nykdy = const), This does not agree with the self-similarity of (1) for the average velocity

and, apparently, contradicts the well-known jet experiment. The further development and accumulation of
experimental data will demonstrate whether or not the concept of an ideal pulsation energy for a turbulent
jet (or of some other ideal turbulent flow) with locally compensated sources and sinks — which is useful for
approximate evaluation — exhibit only theoretical significance or whether a motion that is self-similar with
respect to the pulsation-energy profile under certain conditions can exist as an asymptotic motion.

Let us dwell briefly on the nonself-similar problem. In the general case we should be speaking of
calculating the variations in the pulsation-energy profile along the entire jet, beginning from the specified
initial profile to the developed self-similarity, It is precisely this formulation of the problem that best
corresponds to the experiment (see, for example, [10, 11], etc.).

In such a general form the solution of the problem becomes extremely complex. With a monotonic
variation in the average velocity (uy, diminishes in the direction of the jet) the pulsation energy E,, at the
axig initially increases, subsequently passing through a maximum, and then diminishing, Thus, at the be-
ginning of the jet the guantities uy, and E,; vary oppositely with increasing distance from the source, while
at the end the variation is identical. It is therefore difficult to collect uniform expressions for the compo-
nents in the pulsation-energy balance equation that are suitable for the entire jet, As regards the use of
the method for the equivalent problem from the theory of heat conduction [6, 14], which has demonstrated
its applicability in the calculation of average characteristics for nonself-similar flows, it may prove to be
useful for the basic segment of the jet, i.e., the flows beyond the maximum E.,

A more complete conclusion can be drawn only after thorough and systematic tests are performed.
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